Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles.
نویسندگان
چکیده
Double-stranded RNA (dsRNA) viruses transcribe and replicate RNA within an assembled, inner capsid particle; only plus-sense mRNA emerges into the intracellular milieu. During infectious entry of a rotavirus particle, the outer layer of its three-layer structure dissociates, delivering the inner double-layered particle (DLP) into the cytosol. DLP structures determined by X-ray crystallography and electron cryomicroscopy (cryoEM) show that the RNA coils uniformly into the particle interior, avoiding a "fivefold hub" of more structured density projecting inward from the VP2 shell of the DLP along each of the twelve 5-fold axes. Analysis of the X-ray crystallographic electron density map suggested that principal contributors to the hub are the N-terminal arms of VP2, but reexamination of the cryoEM map has shown that many features come from a molecule of VP1, randomly occupying five equivalent and partly overlapping positions. We confirm here that the electron density in the X-ray map leads to the same conclusion, and we describe the functional implications of the orientation and position of the polymerase. The exit channel for the nascent transcript directs the nascent transcript toward an opening along the 5-fold axis. The template strand enters from within the particle, and the dsRNA product of the initial replication step exits in a direction tangential to the inner surface of the VP2 shell, allowing it to coil optimally within the DLP. The polymerases of reoviruses appear to have similar positions and functional orientations.
منابع مشابه
Analysis of the kinetics of transcription and replication of the rotavirus genome by RNA interference.
Rotaviruses have a genome composed of 11 segments of double-stranded RNA (dsRNA) surrounded by three protein layers. The virus contains an RNA-dependent RNA polymerase that synthesizes RNA transcripts corresponding to all segments of the viral genome. These transcripts direct the synthesis of the viral proteins and also serve as templates for the synthesis of the complementary strand to form th...
متن کاملRotavirus VP2 core shell regions critical for viral polymerase activation.
The innermost VP2 core shell of the triple-layered, icosahedral rotavirus particle surrounds the viral genome and RNA processing enzymes, including the RNA-dependent RNA polymerase (VP1). In addition to anchoring VP1 within the core, VP2 is also an essential cofactor that triggers the polymerase to initiate double-stranded RNA (dsRNA) synthesis using packaged plus-strand RNA templates. The VP2 ...
متن کاملRotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome.
Rotavirus cores contain the double-stranded RNA (dsRNA) genome, RNA polymerase VP1, and guanylyltransferase VP3 and are enclosed within a lattice formed by the RNA-binding protein VP2. Analysis of baculovirus-expressed core-like particles (CLPs) has shown that VP1 and VP2 assemble into the simplest core-like structures with replicase activity and that VP1, but not VP3, is essential for replicas...
متن کاملPhotoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase.
Rotavirus single-shelled particles have several enzymatic activities that are involved with the synthesis of capped mRNAs both in vivo and in vitro. Because single-shelled particles must be structurally intact to carry out transcription, it has proven to be difficult to identify the protein within such particles that possesses associated RNA polymerase activity. One approach for characterizing ...
متن کاملThe N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3.
The innermost core of rotavirus is composed of VP2, which forms a protein layer that surrounds the two minor proteins VP1 and VP3, and the genome of 11 segments of double-stranded RNA. This inner core layer surrounded by VP6, the major capsid protein, constitutes double-layered particles that are transcriptionally active. Each gene encoding a structural protein of double-layered particles has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 425 1 شماره
صفحات -
تاریخ انتشار 2013